Menuruthukum I Newton jika resultan gaya â€" gaya yang bekerja pada suatu benda sama dengan nol, maka benda yang mula â€" mula diam akan tetap diam. Pendahuluan. Sebuah balok bermassa 15 kg diketahui di atas bidang miring kasar. Sudut kemiringannya 300 terhadap horisontal. Sebuah buku bermassa 200 gram berada di atas meja Padagambar diatas Jika koefisien gesekan kinetik antara bidang miring dan benda = 0,2 dan nilai percepatan gravitasi 10 m.s -2 , maka besar resultan gaya yang menyebabkan benda. Benda bermassa m mula-mula berada di puncak bidang miring dan memiliki energi potensial Eo. Benda kemudian meluncur dan sampai di titik P. Energi kinetik yang 7 Sebuah balok bermassa m kg dilepaskan dari puncak bidang miring yang licin seperti pada gambar. Perbandingan energi potensial dan energi kinetik balok ketika berada di titik M adalah . a. E p :E k =1:3 b. E p :E k =1:2 c. E p :E k =2:1 d. E p :E k =2:3 e. E p :E k =3:2 8. Sebuahbola pejal bermassa 5 kg berada di atas bidang miring kasar, mula-mula dalam keadaaan diam, kemudian menggelinding tanpa selip (jika tg 37 = )hitung energi kinetik setelah bergerak selama 7 sekon! Hukum Kekekalan Momentum Sudut pada Gerak Rotasi; Keseimbangan dan Dinamika Rotasi; Statika; Fisika Berdasarkangambar di samping, terdapat empat gaya yang bekerja pada benda. Gaya normal N, gaya gesek fg, gaya berat W = mg, dan gaya yang dibutuhkan agar benda berhenti di dasar bidang miring F. Gaya berat telah diuraikan menjadi komponen-komponennya mg sin $\alpha $ sepanjang bidang miring dan mg cos $\alpha $; tegak lurus bidang miring. lzJHq. Soal no. 14 Perhatikan gambar berikut ini! Seorang penari es sketting sedang berputar di atas lantai es dengan posisi tangan menyilang di dada sehingga memiliki kecepatan sudut $\omega $. Kemudian ia merentangkan kedua tangannya hingga kecepatan sudutnya menjadi $0,5\omega $. Perbandingan energi kinetik rotasi saat tangan menyilang dan saat tangan terentang adalah … Pembahasan Misalkan energi kinetik rotasi saat tangan menyilang dinyatakan dengan $${E_o} = {\textstyle{1 \over 2}}{I_o}\omega _o^2$$ dan energi kinetik rotasi setelah tangan terentang dinyatakan dengan $${E_1} = {\textstyle{1 \over 2}}{I_1}\omega _1^2$$ sehingga $$\frac{{{E_o}}}{{{E_1}}} = \frac{{{\textstyle{1 \over 2}}{I_o}\omega _o^2}}{{{\textstyle{1 \over 2}}{I_1}\omega _1^2}} = \frac{{{I_o}{\omega ^2}}}{{{I_1}{{\left {0,5\omega } \right}^2}}} = \frac{{{I_o}}}{{0,25 \cdot {I_1}}}$$ Dalam kasus penari sketting ini, berlaku hukum kekekalan momentum sudut. Yakni, momentum sudut penari saat posisi tangan menyilang di dada sama dengan momentum sudut penari saat dia merentangkan tangannya. Misalkan momentum sudut penari saat tangannya menyilang di dada adalah Io dan momentum sudut saat tangan direntangkan adalah I1 maka $${L_o} = {L_1}\ \ \Rightarrow \ \ {I_o}{\omega _o} = {I_1}{\omega _1}\ \ \Rightarrow\ \ {I_o}\omega = 0,5{I_1}\omega $$ Diperoleh ${I_o} = 0,5{I_1}$ Substitusi Io ini ke dalam persamaan Eo/E1 sehingga diperoleh $$\frac{{{E_o}}}{{{E_1}}} = \frac{{0,5 \cdot {I_1}}}{{0,25 \cdot {I_1}}} = 2\ \ \Rightarrow \ \ {E_o} = 2{E_1}$$ Jadi, perbandingan energi kinetik rotasi saat tangan menyilang dan saat tangan terentang adalah 2 1 Soal no. 15 Sebuah pesawat ruang angkasa yang sedang mengorbit bumi pada jarak tertentu dari permukaan bumi seperti ditunjukkan pada gambar. Pada suatu saat mesin pesawat mati sehingga pesawat kehilangan tenaga secara bertahap dan keluar dari orbitnya. Maka pada posisi x arah orbit pesawat yang benar ditunjukkan oleh gambar asumsi, gesekan pesawat dan udara diabaikan… Pembahasan Sebuah benda bergerak mengorbit karena adanya gravitasi yang bertindak sebagai gaya sentripetal. Gaya sentripetal dinyatakan dengan persamaan $${F_{sp}} = m\frac{{{v^2}}}{R}$$ Dengan m adalah massa benda satelit, v adalah kecepatan linear satelit dan R adalah jejari orbit. Ketika terjadi kerusakan mesin, kecepatan linear yang dimiliki satelit akan berkurang dari nilai yang sebelumnya. Akibatnya, gaya gravitasi tidak sama lagi dengan persamaan gaya sentripetal di atas. Gaya gravitasi bernilai lebih besar sehingga seiring dengan semakin mengecilnya kecepatan satelit, satelit itu akan semakin tertarik ke arah bumi sambil tetap berputar. Jadi, lintasan satelit akan seperti pada gambar B. Soal no. 16 Perhatikan gambar berikut! Benda bermassa m mula-mula berada di puncak bidang miring dan memiliki energi potensial Eo. Benda kemudian meluncur dan sampai di titik P. Energi kinetik yang dimiliki oleh benda saat di titik P adalah … Pembahasan Dengan menggunakan hukum kekekalan energi mekanik. $${E_{P1}} + {E_{K1}} = {E_{P2}} + {E_{P2}}$$ $${E_o} = {E_{K2}} + mg\left {{\textstyle{1 \over 4}}{h_o}} \right = {E_{K2}} + {\textstyle{1 \over 4}}mg{h_o}$$ Karena Eo = mgho maka persamaan di atas dapat ditulis menjadi $${E_o} = {E_{K2}} + {\textstyle{1 \over 4}}{E_o}\ \ \Rightarrow \ \ {E_{K2}} = {\textstyle{3 \over 4}}{E_o}$$ Jadi energi kinetik balok saat berada pada ketinggian ¼ ho adalah ¾ Eo. Soal no. 17 Sebuah benda yang massanya 2 kg meluncur di atas bidang miring tanpa kecepatan awal seperti pada gambar. Balok tersebut terus meluncur pada lantai yang kasar dengan koefisien gesek 0,4. Jika percepatan gravitasi 10 maka jarak yang ditempuh balok pada lantai sampai balok berhenti adalah .. Pembahasan Secara fisis, balok akan berhenti setelah menempuh jarak tertentu di atas lantai kasar karena adanya gaya gesekan. Gaya gesekan ini melakukan usaha negatif berlawanan arah dengan arah perpindahan sehingga menyebabkan energi kinetik balok menjadi nol. Dengan demikian, kita dapat menyelesaikan soal ini dengan menggunakan teorema usaha energi kinetik. $$W = {E_{K_1}} – {E_{K_2}}$$ Dalam hal ini hanya gaya gesekan yang melakukan usaha, yaitu $${W_{f_g}} = – {f_g} \cdot s$$ Energi kinetik mula-mula adalah energi kinetik di titik Q yang dapat kita hitung dengan menerapkan hukum kekekalan energi mekanik pada bidang miring sebagai berikut $${E_{P_P}} + {E_{K_P}} = {E_{P_Q}} + {E_{K_Q}}$$ Di titik Q energi potensial sama dengan nol sedangkan di titik P energi kinetik sama dengan nol, maka $${E_{P_P}} = {E_{K_Q}}\ \ \Rightarrow\ \ {E_{K_Q}} = mgh = \left 2 \right\left {10} \right\left {0,8} \right = 16\ {\rm{joule}}$$ Dari persamaan teorema usaha-energi kinetik sebelumnya, kita dapat menuliskan $${W_{f_g}} = {E_{K_R}} – {E_{K_Q}}\ \ \Rightarrow \ \ – {f_g} \cdot s = {E_{K_R}} – {E_{K_Q}}$$ Karena benda berhenti di titik R maka energi kinetik di titik itu nol atau EKR = 0 sedangkan ${f_g} = \mu N = \mu mg$ maka $$ – \mu mg \cdot s = – {E_{K_Q}}\ \ \Rightarrow \ \ s = \frac{{{E_{K_Q}}}}{{\mu mg}} = \frac{{16}}{{\left {0,4} \right\left 2 \right\left {10} \right}} = 2\ {\rm{m}}$$ Jadi balok berhenti sejauh 2 m dari titik Q. Soal no. 18 Perhatikan gambar dari tiga peristiwa tumbukan tidak lenting berikut! Setelah tumbukan terjadi, urutan besar kecepatan benda yang ditumbuk dari kecepatan besar ke kecil adalah … A. Gambar 1, gambar 2, gambar 3 B. Gambar 1, gambar 3, gambar 2 C. Gambar 2, gambar 3, gambar 1 D. Gambar 3, gambar 1, gambar 2 E. Gambar 3, gambar 2, gambar 1 Pembahasan Dengan menggunakan hukum kekekalan momentum, kita dapat menuliskan persamaan untuk masing-masing tumbukan sebagai berikut $${m_1}{v_1} + {m_2}{v_2} = {m_1}{v’_1} + {m_2}{v’_2}$$ Untuk gambar 1 $$4mV = 4m{v’_1} + m{v’_2}\ \ \Rightarrow \ \ 4V = 4{v’_1} + {v’_2}\ \ \Rightarrow {v’_2} = 4\left {V – {v’_1}} \right$$ Untuk gambar 2 $$mV = 4m{v’_1} + m{v’_2}\ \ \Rightarrow \ \ V = 4{v’_1} + {v’_2}\ \ \Rightarrow \ \ {v’_2} = V – 4{v’_1}$$ Untuk gambar 3 $$mV = m{v’_1} + m{v’_2}\ \ \Rightarrow \ \ V = {v’_1} + {v’_2}\ \ \Rightarrow \ \ {v’_2} = V – {v’_1}$$ Dengan memperhatikan ketiga persamaan di atas dapat disimpulkan bahwa urutan besar kecepatan benda yang ditumbuk dari kecepatan besar ke kecil adalah gambar 1, gambar 3, dan gambar 2. Soal no. 19 Sebuah benda massanya 1200 gram meluncur dari suatu ketinggian tanpa kecepatan awal seperti pada gambar. Percepatan gravitasi di tempat itu 10 maka besar energi kinetik benda di titik C adalah …. Pembahasan Anggap tidak ada gesekan selama gerakan benda sehingga kita dapat menggunakan hukum kekekalan energi mekanik. Energi mekanik di posisi A = energi mekanik di posisi C $$mg{h_A} + {\textstyle{1 \over 2}}m{v_A}^2 = mg{h_C} + {\textstyle{1 \over 2}}m{v_C}^2$$ Ambil titik acuan di C sehingga hC = 0 dan hA = 3 m. Kecepatan awal di A sama dengan nol sehingga $$mg3 + 0 = 0 + {\textstyle{1 \over 2}}m{v_C}^2\ \ \Rightarrow \ \ {v_C} = \sqrt {6g} = \sqrt {60} = 2\sqrt {15}\ m/s$$ Soal no. 20 Dua ayunan balistik menggunakan peluru dengan kecepatan v1 dan v2 seperti gambar. Jika h2 = 1,5 h1 maka perbandingan kecepatan peluru 1 dan 2 adalah … Pembahasan Untuk dapat membandingkan v1 dan v2 maka kita harus menghitung kedua variabel tersebut. Soal ini adalah soal ayunan balistik. Pada peristiwa ayunan balistik, analisis dilakukan dengan membaginya ke dalam dua bagian. Pertama, saat peluru bergerak dan menumbuk balok. Pada peristiwa ini berlaku hukum kekekalan momentum. $${m_p}{v_p} + {m_b}{v_b} = {m_p}{v’_p} + {m_b}{v’_b}$$ dimana indeks p menyatakan peluru dan indeks b menyatakan balok. Kecepatan setelah tumbukan dinyatakan dengan v’. Karena kecepatan peluru sebelum tumbukan adalah v1 dan balok mula-mula dalam keadaan diam berarti v2 = 0. Selain itu, setelah tumbukan peluru masuk ke dalam balok dan bergerak bersama-sama, berarti kecepatan balok dan kecepatan peluru setelah tumbukan sama misalkan dinyatakan dengan v’, maka persamaan di atas akan menjadi $${m_p}{v_1} = {m_p} + {m_b}v’\ \ \Rightarrow\ \ v’ = \frac{{{m_p}}}{{{m_p} + {m_b}}}{v_1}\ \ …. \ 1$$ Kedua, saat peluru yang telah bersarang ke dalam balok bergerak bersama ke atas sehingga mencapai ketinggian h1 dari keadaan awalnya. Pada bagian gerak ini berlaku hukum kekekalan energi mekanik. $$mg{h_o} + {\textstyle{1 \over 2}}m{v_o}^2 = mg{h_1} + {\textstyle{1 \over 2}}m{v_1}^2$$ Dalam hal ini, m adalah massa gabungan antara balok dan peluru m1 + m2, vo adalah kecepatan balok bersama peluru peluru berada di dalam balok yang tidak lain adalah v’ dalam persamaan 1. h1 adalah tinggi yang dicapai balok dan v1 adalah kecepatan balok+peluru pada ketinggian tersebut dalam hal ini kecepatan balok+peluru pada ketinggian tersebut adalah nol. Dengan mengambil acuan ketinggian pada posisi awal balok, maka ho = 0, sehingga persamaan di atas menjadi $${\textstyle{1 \over 2}}\left {{m_p} + {m_b}} \right{\left {\frac{{{m_p}}}{{{m_p} + {m_b}}}{v_1}} \right^2} = \left {{m_p} + {m_b}} \rightg{h_1}$$ $$\frac{1}{2}\frac{{{m_p}^2}}{{\left {{m_p} + {m_b}} \right}}{v_1}^2 = \left {{m_p} + {m_b}} \rightg{h_1}\ \ \Rightarrow \ \ {v_1}^2 = 2\frac{{{{\left {{m_p} + {m_b}} \right}^2}}}{{{m_p}}}g{h_1}$$ Selanjutnya, untuk ayunan balistik kedua, analisisnya persis seperti di atas. Pada gerak bagian pertama yaitu peristiwa tumbukan antara peluru dengan balok, dengan menerapkan hukum kekekalan momentum diperoleh persamaan $${m_p}{v_2} = {m_p} + {m_b}v’\ \ \Rightarrow v’ = \frac{{{m_p}}}{{{m_p} + {m_b}}}{v_2}$$ Selanjutnya pada gerak bagian kedua, saat balok bersama peluru bergerak berayun, dengan menggunakan hukum kekekalan energi mekanik diperoleh persamaan $$\frac{1}{2}\frac{{{m_p}^2}}{{\left{{m_p} + {m_b}} \right}}{v_2}^2 = \left {{m_p} + {m_b}} \rightg{h_2}$$ Karena h2 = 1,5h1 maka $$\frac{1}{2}\frac{{{m_p}^2}}{{\left {{m_p} + {m_b}} \right}}{v_2}^2 = \left {{m_p} + {m_b}} \rightg\left{1,5{h_1}} \right\ \ \Rightarrow \ \ {v_2}^2 = 3\frac{{{{\left {{m_p} + {m_b}} \right}^2}}}{{{m_p}}}g{h_1}$$ Selanjutnya, dengan membandingkan v12 dan v22 yang telah diperoleh di atas akan didapatkan bahwa $$\frac{{{v_1}^2}}{{{v_2}^2}} = \frac{3}{2}\ \ \Rightarrow \ \ \frac{{{v_1}}}{{{v_2}}} = \frac{{\sqrt 3 }}{{\sqrt 2 }}$$ Jadi perbandingan antara v1 dan v2 adalah $\sqrt 3 \sqrt 2 $. Kelas 10 SMAUsaha Kerja dan EnergiKonsep EnergiSebuah balok bermassa m kg dilepaskan dari puncak bidang miring yang licin seperti gambar di bawah ini. Perbandingan energi potensial dan energi kinetik balok ketika berada di titik M adalah.... h M 1/3HKonsep EnergiUsaha Kerja dan EnergiMekanikaFisikaRekomendasi video solusi lainnya0209Sebuah benda bermassa 4kg mula-mula diam, kemudian berger...0106A pabila Siswo bersepeda menuruni bukit tanpa mengayuh pe...0245Sebuah pegas yang tergantung dalam keadaan normal panjang...Teks videokopling pada sekali ini ditanyakan perbandingan energi potensial dan energi kinetik balok ketika berada di titik M berarti ketika balok berada di titik Mini Berapakah perbandingan energi kinetik dan energi potensialnya yang perlu diketahui adalah nilai dari energi kinetik di titik M dan energi potensial di titik M Tuh berapa? oke pertama-tama disini pada gambar hanya diketahui hanya saja ya atau ketinggiannya saja maka disini kita dapat simpulkan bahwa energi potensial di titik M itu dapat kita dapatkan ya yaitu m * g * h nya adalah 1/3 ke jadi ini adalah nilai dari energi potensial di titik M nya bagaimana dengan energi kinetik di titik M yang kita dapat mencari nilai dari X Mini dengan menggunakan hukum kekekalan energi mekanik ya di M di titik manapun itu akan sama jika energi mekanik di titik M Oke jadi kita ambil contoh energi mekanik di titik tertinggi ya di titik dengan ketinggian h. key kita simbolkan energi mekanik dititik hari ini dengan MHD PH besar oke lalu rumus energi mekanik ialah energi kinetik H ditambah energi potensial sama dengan energi kinetik m + energi potensial oke lalu disini kita harus tahu kita tinjau di titik hal ini bahwa energi kinetik di titik tertinggi itu adalah nol Ya kenapa Karena balok ini pada di titik tertinggi ini baru akan meluncur Jadi ia belum mempunyai kecepatan Oke karena ia baru akan meluncur ke bawah maka dia belum mempunyai kecepatan karena rumus dari energi kinetik itu adalah Energi kinetik itu rumusnya adalah setengah m p. Kuadrat di mana awal dari bawah itu pada saat ketinggian H ini adalah 0 ya Jadi pada ketinggian maksimum energi kinetik di titik H energi kinetik balok titik H itu oke selalu disini energi potensial hanya itu kita ketahui itu m * g * h nya adalah tingginya adalah H ya berarti sini kita h lalu KM itu yang dicari di tambah RPM sudah kita ketahui yaitu m * g dikali 3 ha. Ok ini dapat kita pindah ruas jadi disini Eka m itu sama dengan MG hanya dapat kita gabungkan jadi ha dikurang 3 ha ya Oke MG nya keluar karena sama-sama dengan variabel yang sama maka ia keluar dan haknya itu di selisih ke jadi kita dapatkan nilai x km = m * g di X dikurang sepertiga hal itu adalah 2/3 Haya Oke kita sudah didapatkan nilai dari X KM dan IPM Nya maka dapat kita bandingkan sekarang nilai dari X km per jam di sini km banding epm gimana SKM itu nilainya adalah m * g * 2 per 3 banding EP nya m * g * 1/3 h ke m hanya dapat kita coret hanya dapat kita coret lalu ini penyebutnya sama-sama 3 kita coret maka hasil perbandingannya adalah 2 banding 1 ini untuk energi kinetik energi potensial jadi pada option itu yang benar adalah B ya, Jadi mereka 91 banding 2 ini efeknya satu ini hanya 2 Oke jadi jawabannya yang B Oke sampai ketemu di iso nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

benda bermassa m mula mula berada di puncak bidang miring